Aplikasi Convolutional Neural Networks (CNN) Untuk Klasifikasi Retakan Beton
Farida Asriani(1*), Gandjar Pamudji(2), Hesti Susilawati(3), Firdauz Tri Anggoro(4)(1) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Jenderal Soedirman, Purwokerto
(2) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Jenderal Soedirman, Purwokerto
(3) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Jenderal Soedirman, Purwokerto
(4) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Jenderal Soedirman, Purwokerto
(*) Corresponding Author
Abstract
Beton menjadi bahan utama dari kebanyakan kontruksi bangunan. Timbulnya sebuah retakan atau kerusakan struktur dari beton tersebut sangat berpengaruh terhadap struktur bangunan secara keseluruhan karena mampu memperpendek umur dari bangunan tersebut. Dari hal tersebut, diperlukannya pengawasan secara rutin terhadap kondisi struktur beton sehingga dapat dilakukan perencanaan pemeliharaan di masa depan. Pada paper ini penulis menerapkan teknologi sistem cerdas terhadap pendeteksian keretakan beton. Penerapan Deep Learning dengan arsitektur Convolutional Neural Networks dengan model MobileNet V1 dan Inception V3 dan ResNet-50 untuk melakukan pengklasifikasian kondisi keretakan dari sebuah masukan gambar visual. Deteksi keretakan beton yang dilakukan dikelompokkan dalam tiga kelas yaitu retak besar, retak kecil dan tidak retak. Dari hasil training dan validasi yang telah dilakukan CNN dengan model mobileNet V1 memberikan hasil akurasi yang terbaik yaitu 0,8924 untuk akurasi pelatihan dan 0,8899 untuk akurasi validasi
Full Text:
PDFReferences
S. Dorafshan, M. Maguire, and X. Qi, “Automatic Surface Crack Detection In Concrete Sturctures using Otsu Thresholding and Morphological Operations, Utah State University,†no. April, 2016.
D. G. Aggelis, N. Alver, and H. K. Chai, “Health monitoring of civil infrastructure and materials,†Scientific World Journal, vol. 2014, Article ID 435238, 2 pages, 2014.
I.-H. Kim, H. Jeon, S.-C. Baek, W.-H. Hong, and H.-J. Jung, “Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle,†Sensors, vol. 18, no. 6, p. 1881, 2018.
T. Liu, H. Huang, and Y. Yang, “Crack detection of reinforced concrete member using rayleigh-based distributed optic fiber strain sensing system,†Advances in Civil Engineering, vol. 2020, Article ID 8312487, 11 pages, 2020.
F. S. Herlambang and E. Y. Setyono, “Pengaruh Jarak Transduser dan Tulangan pada Pengukuran Kedalaman Retak Beton Menggunakan Ultrasonic Pulse Velocity,†vol. 3, pp. 162–172, 2017
F. Asriani, G. Pamudji, H. Susilawati, and S. W. Ismani, “Damage Detection Tool Design of Lightweight Concrete Using Optical Fiber Sensor and Phototransistor,†Ijitee, vol. 1, no. 1, pp. 8–12, 2017.
Asriani F, Pamudji G. and Susilawati H. , "Fiber-optic as embedded sensors to failure detection of beam green concrete Fiber Optic as Embedded Sensors to Failure Detection of Beam Green Concrete," AIP Conf. Proc., vol. 020016, no. April, 2019.
Asriani F, Winasis and Pamudji G, “Sensitivity of Optical Fiber Sensors to Deflection of Reinforced Concrete Beamâ€, IOP Conference Series: Materials Science and Engineering, ICETIR 2020
Y.-C. Tsai, V. Kaul, and R. M. Mersereau, “Critical assessment of pavement distress segmentation methods,†Journal of Transportation Engineering, vol. 136, no. 1, pp. 11–19, 2010.
D. Zhang, Q. Li, Y. Chen, M. Cao, L. He, and B. Zhang, “An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection,†Image and Vision Computing, vol. 57, pp. 130–146, 2017.
A. Ayenu-Prah and N. Attoh-Okine, “Evaluating pavement cracks with bidimensional empirical mode decomposition,†EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1–7, 2008.
P. Subirats, J. Dumoulin, V. Legeay, and D. Barba, “Automation of pavement surface crack detection using the continuous wavelet transform,†in Proceedings of the International Conference on Image Processing, pp. 3037–3040, IEEE, Atlanta, GA, USA, October 2006.
L. Ying and E. Salari, “Beamlet transform-based technique for pavement crack detection and classification,†ComputerAided Civil and Infrastructure Engineering, vol. 25, no. 8, pp. 572–580, 2010.
Wilson Ricardo Leal da Silva and Diogo Schwerz de Lucena, “Concrete Cracks Detection Based on Deep Learning Image Classificationâ€, Proceedings 2018, 2, 489; doi:10.3390/ICEM18â€05387.
Cheng Yang , Jingjie Chen Zhiyuan Li and Yi Huang, “ Structural Crack Detection and Recognition Based on Deep Learning, Applied Sciences, . 2021, 11, 2868. https://doi.org/10.3390/app11062868
Prio Handoko and Agustinus Agus Setiawan, “ Pengembangan Aplikasi Analisis Penampang Beton Bertulang berbassis Androinâ€, Dinamika Rekayasa, vol 13, no 2, 2017
Refbacks
- There are currently no refbacks.