Optimasi Setup Proses Engraving CNC Laser Cutting Material Akrilik Menggunakan Simplex Centroid Design dan Optimasi Respon

Dewa Kusuma Wijaya(1*), Dwi Nurul Izzhati(2)

(1) Teknik Industri, Universitas Dian Nuswantoro Semarang
(2) Program Teknik Industri, Fakultas Teknik, Universitas Dian Nuswantoro Semarang
(*) Corresponding Author

Abstract

Artikel ini membahas penelitian terkait optimasi komposisi level setup proses engraving mesin CNC laser cutting tipe G-Weike LC6090 terhadap material akrilik. Penelitian ini dibutuhkan karena tidak adanya acuan tabulasi level setup proses engraving pada mesin tersebut, sehingga setup proses hanya berdasarkan perkiraan. Hal ini memunculkan masalah terkait kualitas hasil proses, efisiensi permesinan, dan masa pakai tabung CO2 penghasil laser. Artikel ini memperlihatkan hasil optimasi komposisi level setup optimal proses engraving menggunakan Design of Experiment (DoE) dengan metode Simplex Centroid Design (SCD) dan optimasi multi respon. Faktor komposisi setup dalam penelitian ini adalah kecepatan proses, kekuatan, dan interval pemakanan laser. Sedangkan parameter multi respon yang diukur adalah waktu proses, depth, dan roughness. Model formulasi matematis akan dihasilkan dari setiap parameter responnya, kemudian dilakukan optimasi respon tersebut berdasarkan depth yang diinginkan. Hasil penelitian menunjukkan terdapat trade off dari parameter multi responnya, serta diperoleh komposisi level setup optimal untuk batas depth (p) 0,3 mm ≥ p ≤ 1,34 mm.

Keywords

engraving, CNC laser cutting, design of experiment, simplex centroid design, optimasi respon.

Full Text:

PDF

References

Shift. Memahami dan Mempraktekkan Design of Experiments (DOE). www.shiftindonesia.com/memahami-dan-mempraktekkan-design-of-experiments-doe.html. 2013. Waktu akses 1 Desember 2018.

Wijaya D. K., dan Wibisono M. A. Optimasi Komposisi Media Filter Instalasi Pengolah Air Limbah Batik Berbasis Multi Media Filter dengan Metode Simplex Centroid Design. Annual Conference in Industrial and System Engineering (ACISE). 2015; 4: 94-104.

Chen M. F., Ho Y. S., Hsiao W. T., Wu T. H., Tseng S. F., and Huang K. C. Optimized laser cutting on light guide plates using grey relational analysis. Optics and Lasers in Engineering. 2011; 49: 222-228.

Adalarasan R., Santhanakumar M., and Rajmohan M. Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM). Measurement. 2015; 73: 596-606.

Leone C., Lopresto V., and Iorio I. D. Wood engraving by Q-switched diode-pumped frequency-doubled Nd:YAG green laser. Optics and Lasers in Engineering. 2009; 47: 161-168.

Roy A., Kumar N, Das S., and Bandyopadhyay A. Optimization of Pulsed Nd:YVO Laser Marking of AISI 304 Stainless Steel Using Response Surface Methodology. Materials Today: Proceedings. 2018; 5: 5244-5253.

Huehnlein K., Tschirpke K., and Hellman R. Optimization of laser cutting processes using design of experiments. Physics Procedia. 2010; 5:243-252.

Dubey A. K. and Yadava V. Multi-objective optimisation of laser beam cutting process. Optics & Laser Technology. 2008; 40: 562-570.

Rodrigues G. C., Vorkov V., and Duflou J. R. Optimal laser beam configurations for laser cutting of metal sheets. Procedia CIRP. 2018; 74: 714-718.

Parthiban A., Chandrasekaran M., Muthuraman V., and Sathish S. Optimization of CO2 Laser Cutting of Stainless Steel Sheet for Curved Profile. Materials Today. Proceeding. 2018; 5:14531-14538.

Seon S., Shin J. S., Oh S. Y., Park H., Chung C. M., Kim T. S., Lee L, and Lee J. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting. Optics & Laser Technology. 2018; 103: 311-317.

Eltawahni H. A., Rossini N. S., Dassisti M., Alrashed K., Aldaham T. A., Benyounis K. Y., and Olabi A.G. Evalaution and optimization of laser cutting parameters for plywood materials. Optics and Lasers in Engineering. 2013; 51: 1029-1043.

Choudhury I. A., and Shirley S. Laser cutting of polymeric materials: An experimental investigation. Optics & Laser Technology. 2010; 42: 503-508.

Moradi M., Mehrabi O., Azdast T., and Benyounis K.Y. Enhancement of low power CO laser cutting process for injection molded polycarbonate. Optics & Laser Technology. 2017; 96: 208-218.

Abdullah N. and Chin N.L Simplex Centroid Mixture Formulation for Optimised Composting of Kitchen Waste. Bioresource Technology. 2010: 8205-8210.

Chen R., Zhang Z., Feng C., Hu K., Li M., Li Y., Shimizu K., Chen N., and Sugiura N. Application of Simplex Centroid Mixture Design In Developing and Optimizing Ceramic Adsorbent for As(V) Removal from Water Solution. Microporous and Mesoporous Materials. 2010; 131: 115-221.

Dias F.F.G., Castro R.J.S.D., Ohara A., Nishide T.G., Bagagli M.P., and Sato H.H. Simplex Centroid Mixture Design To Improve L-Asparaginase Production In Solid State Fermentation Using Agroindustrial Waste. Biocatalysis and Agricultural Biotechnology. 2015; 4:528-534.

Refbacks

  • There are currently no refbacks.